حل عددی معادلات انتگرال و انتگرال-دیفرانسیل با استفاده از موجک های سینوس-کسینوس

thesis
abstract

در این پایاننامه به حل عددی معادلات انتگرال-دیفرانسیل فردهلم خطی و نیز دستهای از معادلات انتگرال غیرخطی با استفاده از موجک سینوس-کسینوس میپردازیم. این روش بر این اساس استوار است که هر کدام از جملات موجود در معادله را با استفاده از موجک سینوس-کسینوس به عنوان یک پایهی متعامد یکه، تقریب میزند و سپس معادله موجود را به دستگاهی از معادلات جبری تبدیل میکند. در مورد معادلات انتگرال- تقریب زده میشود که در آن y(t) ? (y tp + y0t ) (t) معادله به صورت y(t) دیفرانسیل خطی جواب (t) است. همچنین y(0) ? y0t (t) ماتریس عملیاتی انتگرال برای موجک سینوس-کسینوس و p بردار موجک سینوس-کسینوس میباشد. در این مسأله دستگاه معادلات حاصل یک دستگاه خطی است که با حل آن میتوان جواب تقریبی معادله را پیدا کرد. تقریب زده میشود که در آن y(t) ? y t (t) به صورت y(t) در مورد معادلات انتگرال غیرخطی، جواب بردار مجهولات است. در این مسأله دستگاه حاصل، یک دستگاه غیرخطی از معادلات است. با یافتن بردار y t مجهولات جواب تقریبی معادله به دست خواهد آمد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

حل عددی معادلات انتگرال-دیفرانسیل غیر خطی مرتبه کسری با استفاده از موجک های کسینوس و سینوس

موجک های کسینوس و سینوس مجموعه ای از توابع متعامداند که برای تقریب توابع به کار می روند. در این پایان نامه‏، از موجک های کسینوس و سینوس در بازه ‎‎‎‎[0,1]‎ ‎‏ برای حل معادلات انتگرال-دیفرانسیل مرتبه کسری غیرخطی نوع دوم استفاده می کنید. این روش بر پایه تبدیل معادله انتگرال-دیفرانسیل به دستگاه معادلات جبری بوسیله بسط جواب بر حسب موجک های کسینوس و سینوس با ضرایب مجهول است. مشخصه اصلی این روش موثر‏...

15 صفحه اول

حل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل

در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم  بسل  است. نت...

full text

‏به‌کارگیری موجک چبیشف‏ نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم

در این مقاله‏، حل عددی معادلات انتگرال فردهلم فازی نوع دو‏م با به‌کارگیری موجک چبیشف‏ نوع دوم را مورد بررسی قرار می‌دهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگی‌های اولیه موجک چبیشف‏ نوع دوم‏، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دو‏م‏، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی می‌نماییم. سپس با به‌کارگیری موجک چبیشف‏ نوع دوم و به...

full text

حل معادلات دیفرانسیل و انتگرال با توابع والش

هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم پایه

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023