حل عددی معادلات انتگرال و انتگرال-دیفرانسیل با استفاده از موجک های سینوس-کسینوس
thesis
- وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم پایه
- author فاطمه هکی
- adviser محمد شفیع دهاقین علیرضا امینی هرندی
- Number of pages: First 15 pages
- publication year 1390
abstract
در این پایاننامه به حل عددی معادلات انتگرال-دیفرانسیل فردهلم خطی و نیز دستهای از معادلات انتگرال غیرخطی با استفاده از موجک سینوس-کسینوس میپردازیم. این روش بر این اساس استوار است که هر کدام از جملات موجود در معادله را با استفاده از موجک سینوس-کسینوس به عنوان یک پایهی متعامد یکه، تقریب میزند و سپس معادله موجود را به دستگاهی از معادلات جبری تبدیل میکند. در مورد معادلات انتگرال- تقریب زده میشود که در آن y(t) ? (y tp + y0t ) (t) معادله به صورت y(t) دیفرانسیل خطی جواب (t) است. همچنین y(0) ? y0t (t) ماتریس عملیاتی انتگرال برای موجک سینوس-کسینوس و p بردار موجک سینوس-کسینوس میباشد. در این مسأله دستگاه معادلات حاصل یک دستگاه خطی است که با حل آن میتوان جواب تقریبی معادله را پیدا کرد. تقریب زده میشود که در آن y(t) ? y t (t) به صورت y(t) در مورد معادلات انتگرال غیرخطی، جواب بردار مجهولات است. در این مسأله دستگاه حاصل، یک دستگاه غیرخطی از معادلات است. با یافتن بردار y t مجهولات جواب تقریبی معادله به دست خواهد آمد.
similar resources
حل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
full textحل عددی معادلات انتگرال-دیفرانسیل غیر خطی مرتبه کسری با استفاده از موجک های کسینوس و سینوس
موجک های کسینوس و سینوس مجموعه ای از توابع متعامداند که برای تقریب توابع به کار می روند. در این پایان نامه، از موجک های کسینوس و سینوس در بازه [0,1] برای حل معادلات انتگرال-دیفرانسیل مرتبه کسری غیرخطی نوع دوم استفاده می کنید. این روش بر پایه تبدیل معادله انتگرال-دیفرانسیل به دستگاه معادلات جبری بوسیله بسط جواب بر حسب موجک های کسینوس و سینوس با ضرایب مجهول است. مشخصه اصلی این روش موثر...
15 صفحه اولحل عددی معادلات انتگرال-دیفرانسیل فردهلم-ولترای-همرشتاین غیرخطی با استفاده از توابع بسل
در این مقاله، روش هم محلی بر پایه چندجمله ای های بسل را برای حل معادلات انتگرال-دیفرانسیل فردهلم-ولترا-همرشتاین غیرخطی با شرایط آمیخته به کار می بریم. در این روش، معادلات انتگرال- دیفرانسیل فردهلم- ولترای- همرشتاین غیرخطی با به کارگیری چند جمله ای های بسل نوع اول و نقاط گره ای تبدیل به معادله ای ماتریسی می شود. معادله ماتریسی متناظربا یک دستگاه معادلات غیرخطی جبری با ضرایب نامعلوم بسل است. نت...
full textبهکارگیری موجک چبیشف نوع دوم در حل عددی معادلات انتگرال فردهلم خطی فازی نوع دوم
در این مقاله، حل عددی معادلات انتگرال فردهلم فازی نوع دوم با بهکارگیری موجک چبیشف نوع دوم را مورد بررسی قرار میدهیم. پس از بیان تعاریف مقدماتی مرتبط با معادلات فازی و نیز ویژگیهای اولیه موجک چبیشف نوع دوم، فرم پارامتری معادلات انتگرال فردهلم فازی نوع دوم، که در واقع دستگاهی از معادلات انتگرال فردهلم خطی در حالت غیرفازی است را معرفی مینماییم. سپس با بهکارگیری موجک چبیشف نوع دوم و به...
full textحل معادلات دیفرانسیل و انتگرال با توابع والش
هر شکل موج متناوب و مناسب را می توان بصورت یک سری از توابع والش بیان کرد . اگر سری در انتهای گروهی از جملات با مرتبه معیین قطع گردد جمع جزئی جمل تقریب پلکانی شکل موج خواهد بود ، بلندی هر پله مساوی مقدار متوسط شکل موج در همان فاصله خواهد بود . اگر یک تبدیل غیر خطی حافظ صفر به یک سری والش اعمال گردد ، سری حاصل را می توان با اعمال جبری ساده بدست آورد . ضرایب سری اولیه تغییر خواهد کرد اما جمله ها...
full textحل معادلات دیفرانسیل-انتگرال جزئی سهموی با توابع پایهای شعاعی گوسی و درجه دوم چندگانه معکوس
This article has no abstract.
full textMy Resources
document type: thesis
وزارت علوم، تحقیقات و فناوری - دانشگاه شهرکرد - دانشکده علوم پایه
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023